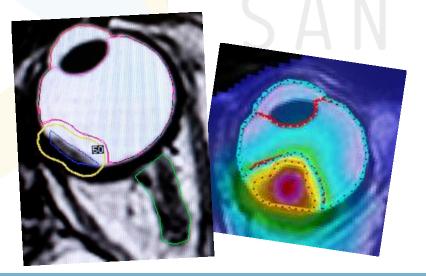

OSPEDALE SAN RAFFAELE

DOSE-VOLUME PREDICTORS OF RADIO-INDUCED COMPLICATIONS AFTER RADIOSURGERY FOR UVEAL MELANOMA

Gigliotti CR^a, del Vecchio A^a, Perna LA^a, Fiorino C^a, Modorati GM^b, Di Nicola M^b, Mortini P^c, Picozzi P^c, Franzin A^c, Bolognesi A^d, Calandrino R^a

IRCCS San Raffaele Scientific Institute, Milan: ^a Medical Physics, ^b Ophthalmology, ^c Neurosurgery, ^d Radiotherapy

PURPOSE


- Uveal melanoma (UM) intraocular malignancy
- Highly aggressive → 40-50% overall mortality rate in 15 years
- Gamma Knife stereotactic radiosurgery
 (GKRS) → good survival, local control and eye retention
- •Complication rate → ranging from 55% to 82%

To assess dosimetry and clinical variables associated with risk of radio-induced effects in patients affected by UM treated with GKRS

Clinical and dosimetric data

→ 66 pts treated with exclusive GKRS for UM enrolled

Anagrafic information, Clinical findings of tumor, Ultrasonography, Treatment information, DVHs (→ Re-contoured critical structures on the MRI *)

* Optic nerve, eyeball and posterior segment of the bulb

End-points

- Ophthalmological examination before, 1 day, 1, 3 and 6 months after GKRS → then each six months
- Median FU = 2 years
- Toxicities with a n° of events > 6

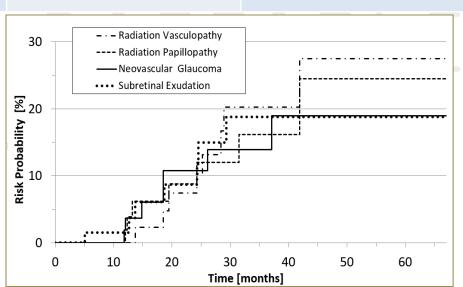
Side effect	Incidence (%)	Median onset time (range) [months]
Radiation Vasculopathy	8/66 (12%)	24.8 (13.7-41.9)
Neovascular Glaucoma	7/66 (11%)	15.6 (11.8-37.1)
Radiation Papillopathy	7/66 (11%)	19.5 (12-41.9)
Subretinal Exudation	7/66 (11%)	18.7 (5.1-29.3)
Visual Acuity reduction ≥ 20%	42/66 (63.6%)	6 (6-24)
100% Visual Acuity reduction	15/66 (22.7%)	6 (6-36)

Statistical Anlyses

- Kaplan-Meyer method for actuarial risk
- Two-sided t-tests for preselection of the dosevolume parameters
- Univariate and multivariate Cox's proportional

hazard model

- •Receiver operating characteristic (**ROC**) curve to evaluate cut-off values of significant variables
- •The area under the ROC curve (AUC) to measure discriminative power of models

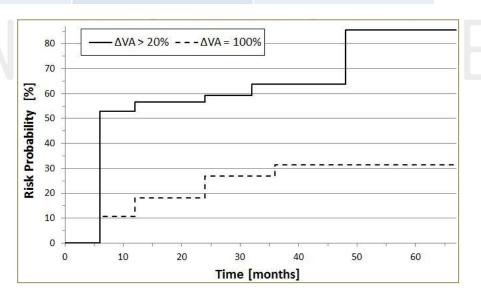

RESULTS

Univariate Cox's analyses of factors predicting GKSR-related toxicities

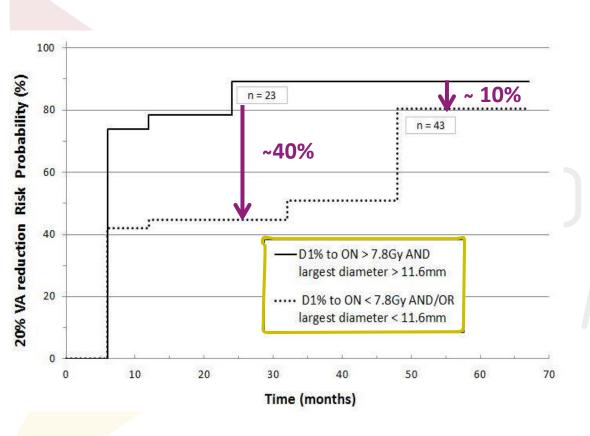
Predictive factor /end-point	Neo Vascular Glaucoma	Radiation Vasculopathy	Radiation Papillopathy
D _{1%} Optic Nerve		p=0.0009 HR=1.2 cut-off: 23.8Gy AUC=0.86	p=0.009 HR=1.14 cut-off: 14.9Gy AUC=0.83
V20 Posterior Segment	p=0.0003 HR=1.12 cut-off: 413.7mm ³ AUC=0.83		
Prescription Isodose - Optic Nerve Distance		p=0.0114 HR=0.33 cut-off: 2.2 mm AUC=0.87	
Position: anterior to equator		p=0.008 HR=0.14	
Tumor Thickness	p=0.0009 HR=2.01 cut-off: 8.7mm AUC=0.83		

Kaplan-Meyer actuarial risk probability → 2-years risk

- NVG 14%
- RP 12%
- RV 10%
- SE 15%



Multivariate Cox's analyses of factors predicting basal Visual Acuity reduction


Predictive factor /end- point	20% basal VA reduction	100% basal \	VA reduction
	Model: AUC=0.79	1° Model: AUC=0.83	2° Model: AUC=0.86
D _{1%} Optic Nerve	p=0.045 HR=1.04	p=0.002 HR=1.12	
	cut-off: 7.8 Gy	cut-off: 13.2 Gy	
Largest Tumor	p=0.02 HR=1.15	p=0.007 HR=1.36	p= 0.0035 HR=1.47
Diameter	cut-off: 11.6 mm	cut-off: 9 mm	cut-off: 9 mm
Prescription			n- 0 006 HP-0 F6
Isodose - Optic			p= 0.006 HR=0.56 cut-off: 3.9 mm
Nerve Distance			cut-011. 5.9 111111

Kaplan-Meyer actuarial risk probability → 2-years risk :

- ΔVA≥20% 59%
- ΔVA=100% 27%

KM risk probability for 20% VA reduction

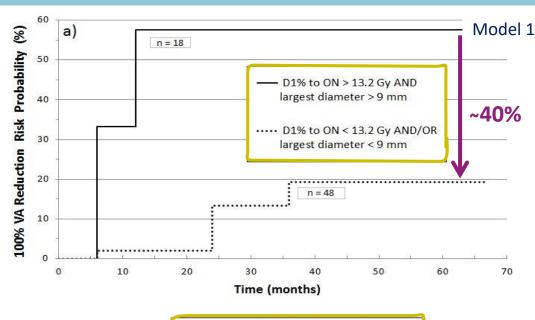
- early reduction:
 <u>double risk</u> for the
 population exceeding the
 cutoff values
- ▶ late reduction:
 risk comparable → dose constraint effective in postponing the onset of VA reduction

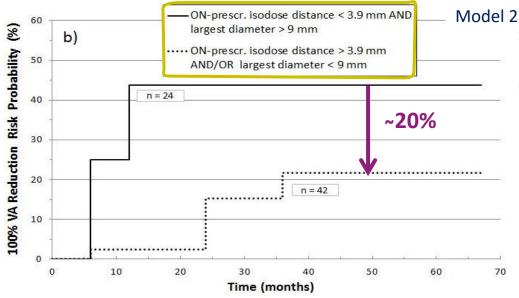
KM risk probability for 100% VA reduction

> 1st model:

risk 3 times higher for the population exceeding the cutoff values

Dose constraint in line with the QUANTEC guidelines


≥ 2nd model :


influence of dose

conformation to the target

→ constraint independent

from the prescribed dose

CONLUSIONS

- ✓ Found clinical and dosimetry variables to clearly predict the risk of toxicities → dose constraints to critical structures
- ✓ Reducing V20 of the posterior part of the bulb → reduction of risk of glaucoma
- ✓ Constraining D_{max} to the optic nerve below 12-13 Gy → dramatic reduction of risk of blindness.
- ✓ Tumor dimension (LTD < 9-11 mm) → limitation for dose constraints implementation to maintain the tumor local control</p>